Pilot study of procedures for evaluating benefit from fm systems using a speech in noise test and a questionnaire

Carina Newman (Ed Aud, Shropshire SIS) and Mary Hostler (HCD Group, Manchester University)

Introduction

FM systems play a hugely important role in the lives of many hearing impaired children, and provide a lifeline for children in adverse listening conditions such as mainstream classrooms. They are a crucial part of a child’s ‘amplification package’. They are currently provided and managed within the remit of LEA’s education support services by Educational Audiologists (Ed Auds) and Teachers of the Deaf (ToDs). But times are changing.

Good communication and joint review clinics between health and education services (ICMHAS, 2004) enable paediatric audiologists to play an increasingly important role, in partnership and collaboration with Ed Auds, ToDs, children and their families in the selection, fitting and management of FM systems. Procedures for setting up FM systems with DSP hearing aids were developed during the Modernisation of Children’s Hearing Aid Services project (ICMHAS). However, although systematic evaluation of fm systems is therefore in place in order to ensure that they give the desired benefit, there are currently no recommended procedures or good practice guidelines in the UK. This pilot study was designed to begin to address the need for standardised procedures for the evaluation of FM systems. The aim was to develop procedures which would:

- be feasible and useful in demonstrating and measuring benefit
- highlight areas where further targeted investigation and support are required
- identify barriers to the effective use of FM systems.

Two procedures – an objective speech in noise test and a subjective questionnaire were piloted in this study. Both are appropriate for use in a clinic or classroom situation. Results from two groups using the speech in noise procedure (normally hearing students and hearing impaired children) are reported here. Some of the results indicate that a group of hearing impaired children were described. Future research and development is indicated.

Part 1 speech in noise test

Method

The hearing instruments (HIs) were checked and the fm system was set up following fm Advantage procedures. (Evans, 2004)

- All wall lists were used. The test procedure and required response was explained, with suitable examples.
- See diagram for test set up. The loudspeakers were at approx. ear level height. Calibration was checked with a sound level meter (SLM).
- The first list was delivered at 60dBA with the child ear occluded. The next list was noted, the baseline performance with hearing aids in quiet.

Note: The level can be increased to obtain an adequate ToDs. The fm system was set up following fm Advantage procedures.

The hearing instruments (HIs) were checked and the fm system was set up following fm Advantage procedures. (Evans, 2004)

Results, speech in noise test

The table below shows results from 8 children aged 7-13 years. Note that hearing aids/CIs were in FM+M mode. Greater benefit is possible in FM only mode.

<table>
<thead>
<tr>
<th>Child</th>
<th>SNR in Noise (HA)</th>
<th>SNR in Noise (FM)</th>
<th>SNR in Noise (HA+FM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Child 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Child 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Child 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Child 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Child 6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Child 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Child 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The worst score (with HIs only) in noise was obtained at SNR of +10dB. The next list was delivered with the noise at 60dBA, and the speech at 80dBA into the fm Tx microphone.

The worst score (with HIs only) in noise was compared with the score obtained with the fm system at the same SNR, and the improvement noted. (For the student the SNR this was obtained at was noted)

The results were evaluated, to check:

a. That the speech scores in quiet were commensurate with speech scores obtained during routine HI evaluations.

b. How the score obtained in noise with HI alone compares to that obtained in quiet.

c. When the fm system was used, how much the score improved towards the baseline score with the HIs alone.

When it does not improve significantly – further investigation is required.

Note: This method can be adjusted to reflect actual classroom conditions, if these are known (e.g. SNR -15, -20 etc) The test can be adaptive, depending on performance.

Test 2: Questionnaire

Overall, these children’s subjective assessment of their fm systems was positive, and they reported high levels of use in school.

Use in different listening situations:

For whole class teaching 10/12 use FM always or most of the time and report a lot of benefit and much easier listening.

Use in other situations varies, in small group work 7/12 use FM most of the time or always, 8/12 use FM in assembly, 6/12 use it most of the time or always on a school trip, 7/12 use FM in other situations in school such as (in this order of frequency) TV, computer, language tapes, interactive whiteboard.

Use out of school:

10/12 do NOT use FM out of school, though all those surveyed have this option available to them.

Ease of use:

9/12 find FM very easy to use, and 7/12 find handling over the transmitter no problem.

Faults:

5 reported not often, 5 reported sometimes, 2 reported very often.

Overall rating:

6/12 rated their FM system as “OK” and 3 said they were delighted with it. 2 said they were “a little” happy with it and 1 did not answer.

What would the children like to change? (not everyone answered this) Some examples: Want wireless (2), no shoes to attach, blue colour, smaller, not to be the only one wearing one.

One said “it rubbish” Two said they wouldn’t change a thing!

Overall, good feedback was obtained on problems with wearing, presentation and concepts. ToDs expressed some concern about deliberately seeking negative feedback, by asking about problems, or prompting the child to report on looks/ hassle etc.

Conclusions

Both the objective and subjective procedures are feasible and together provide a comprehensive evaluation of the use, benefit and impact of FM systems. The speech in noise test could reveal if FM benefit was poorer than expected and quantify the extent of benefit for individuals in a way which also allowed for data to be pooled and compared. This makes the results useful for both individual management and monitoring of services. The questionnaires produced useful information for individual management/support decisions. It could also be useful if pooled to indicate general trends such areas for improvement.

Developments/further research:

Speech in noise test: Reporting of the results as “SNR loss” (i.e. increase in SNR required to achieve a score of 90%, compared to normal performance) This requires generating performance/intensity functions for different speech tests in noise, for normal hearing and hearing impaired groups.

Questionnaire: This has now been re-drafted as two different, but similar instruments, and pictures have been added for the primary school children. It is still in development. The next phase of its validation is a larger study to determine psychometric parameters.

References
